

WJEC Wales Biology A Level

SP 4.3: Experiment to illustrate gene segregation

Practical notes

Introduction

Mendel's **law of segregation** states that only **one** of the two copies of each gene is transferred to a gamete and that this is **random**.

The patterns of inheritance for different phenotypes can be explained by Mendelian genetics.

The X^2 (or chi-squared) test can be used to analyse whether such inheritance patterns are statistically equivalent to the Mendelian ratio.

Equipment

• Zea mays corn cob

Risk assessment

Hazard	Risk	Precaution	Emergency
Biohazard		Cover any cuts; wash hands after handling kernels	Seek medical advice

Method

- 1. Identify the different corn cob phenotypes.
- 2. Total the observed number of kernels of each phenotype. Record your results.
- 3. Establish a null hypothesis, the theoretical Mendelian phenotypic ratio.
- 4. Use the X² test to analyse whether the inheritance pattern is **statistically equivalent** to the **Mendelian ratio**:
 - a. Calculate the **expected** frequencies using the phenotypic ratio
 - b. Calculate the X² value
 - c. Work out the degrees of freedom
 - d. Find the critical value and test the significance
- 5. Deduce the parent genotypes.

Worked example

1. Identify the different corn cob phenotypes.

Four different corn cob phenotypes: tall green, tall albino, dwarf green and dwarf albino.

2. Total the observed number of kernels of each phenotype. Record your results.

Phenotype	Number of kernels		
Tall green	87		
Tall albino	31		
Dwarf green	35		
Dwarf albino	7		

3. Establish a null hypothesis, the theoretical Mendelian phenotypic ratio.

9 Tall green: 3 Tall albino: 3 Dwarf green: 1 Dwarf albino

 $\rm H_{\rm 0}$ - there is no statistically significant difference between the observed and expected numbers of offspring phenotypes.

4. a. Calculate the expected frequencies using the phenotypic ratio

Tall green:
$$\frac{160}{16} \times 9 = 90$$

Tall albino:
$$\frac{160}{16} \times 3 = 30$$

Dwarf green:
$$\frac{160}{16} \times 3 = 30$$

Dwarf albino:
$$\frac{160}{16} \times 1 = 10$$

b. Calculate the X² value

Phenotype	Observed no.	Expected no.	(O-E)	(O-E) ²	(O-E) ² /E
Tall green	87	90	-3	9	0.10

Tall albino	31	30	1	1	0.03
Dwarf green	35	30	5	25	0.83
Dwarf albino	7	10	-3	9	0.90

$$X^2 = \sum (O-E)^2/E = 0.10 + 0.03 + 0.83 + 0.90 = 1.86$$

c. Work out the degrees of freedom (this is one less than the number of phenotypes).

$$df = 4 - 1 = 3$$

d. Find the critical value and test the significance.

Probability of 0.05, df of 3, critical value for $X^2 = 7.81$.

1.86 < 7.81

The null hypothesis is accepted.

The mendelian ratio is 9:3:3:1. Any deviations from this are down to chance.

5. Deduce the parent genotypes

The phenotypes are determined by two alleles at different gene loci. 'Tall' is dominant over 'dwarf' and 'green' is dominant over 'albino'. This F₂ generation is produced by the breeding of two heterozygous parents.